Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 377
1.
Invest Ophthalmol Vis Sci ; 65(4): 43, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38683564

Purpose: Complement dysregulation is a key component in the pathogenesis of age-related macular degeneration (AMD) and related diseases such as early-onset macular drusen (EOMD). Although genetic variants of complement factor H (CFH) are associated with AMD risk, the impact of CFH and factor H-like protein 1 (FHL-1) expression on local complement activity in human retinal pigment epithelium (RPE) remains unclear. Methods: We identified a novel CFH variant in a family with EOMD and generated patient induced pluripotent stem cell (iPSC)-derived RPE cells. We assessed CFH and FHL-1 co-factor activity through C3b breakdown assays and measured complement activation by immunostaining for membrane attack complex (MAC) formation. Expression of CFH, FHL-1, local alternative pathway (AP) components, and regulators of complement activation (RCA) in EOMD RPE cells was determined by quantitative PCR, western blot, and immunostaining. Isogenic EOMD (cEOMD) RPE was generated using CRISPR/Cas9 gene editing. Results: The CFH variant (c.351-2A>G) resulted in loss of CFH and FHL-1 expression and significantly reduced CFH and FHL-1 protein expression (∼50%) in EOMD iPSC RPE cells. These cells exhibited increased MAC deposition upon exposure to normal human serum. Under inflammatory or oxidative stress conditions, CFH and FHL-1 expression in EOMD RPE cells paralleled that of controls, whereas RCA expression, including MAC formation inhibitors, was elevated. CRISPR/Cas9 correction restored CFH/FHL-1 expression and mitigated alternative pathway complement activity in cEOMD RPE cells. Conclusions: Identification of a novel CFH variant in patients with EOMD resulting in reduced CFH and FHL-1 and increased local complement activity in EOMD iPSC RPE supports the involvement of CFH haploinsufficiency in EOMD pathogenesis.


Complement Factor H , Haploinsufficiency , Intracellular Signaling Peptides and Proteins , LIM Domain Proteins , Macular Degeneration , Muscle Proteins , Retinal Pigment Epithelium , Humans , Complement Factor H/genetics , Complement Factor H/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Macular Degeneration/genetics , Macular Degeneration/metabolism , Male , Female , Induced Pluripotent Stem Cells/metabolism , Complement C3b Inactivator Proteins/genetics , Complement C3b Inactivator Proteins/metabolism , Complement Activation/genetics , Pedigree , Blotting, Western , Complement System Proteins/metabolism , Complement System Proteins/genetics , Retinal Drusen/genetics , Retinal Drusen/metabolism , Middle Aged
2.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article En | MEDLINE | ID: mdl-38338978

Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss among the elderly in the developed world. Whilst AMD is a multifactorial disease, the involvement of the complement system in its pathology is well documented, with single-nucleotide polymorphisms (SNPs) in different complement genes representing an increased risk factor. With several complement inhibitors explored in clinical trials showing limited success, patients with AMD are still without a reliable treatment option. This indicates that there is still a gap of knowledge in the functional implications and manipulation of the complement system in AMD, hindering the progress towards translational treatments. Since the discovery of the CRISPR/Cas system and its development into a powerful genome engineering tool, the field of molecular biology has been revolutionised. Genetic variants in the complement system have long been associated with an increased risk of AMD, and a variety of haplotypes have been identified to be predisposing/protective, with variation in complement genes believed to be the trigger for dysregulation of the cascade leading to inflammation. AMD-haplotypes (SNPs) alter specific aspects of the activation and regulation of the complement cascade, providing valuable insights into the pathogenic mechanisms of AMD with important diagnostic and therapeutic implications. The effect of targeting these AMD-related SNPs on the regulation of the complement cascade has been poorly explored, and the CRISPR/Cas system provides an ideal tool with which to explore this avenue. Current research concentrates on the association events of specific AMD-related SNPs in complement genes without looking into the effect of targeting these SNPs and therefore influencing the complement system in AMD pathogenesis. This review will explore the current understanding of manipulating the complement system in AMD pathogenesis utilising the genomic manipulation powers of the CRISPR/Cas systems. A number of AMD-related SNPs in different complement factor genes will be explored, with a particular emphasis on factor H (CFH), factor B (CFB), and complement C3 (C3).


Complement Factor B , Macular Degeneration , Humans , Aged , Haplotypes , Macular Degeneration/genetics , Macular Degeneration/therapy , Macular Degeneration/pathology , Complement Activation/genetics , Risk Factors , Polymorphism, Single Nucleotide
3.
Front Immunol ; 14: 1206409, 2023.
Article En | MEDLINE | ID: mdl-37954621

Introduction: Atypical hemolytic uremic syndrome (aHUS) is a rare kidney disease caused by dysregulation of the complement alternative pathway. The complement dysregulation specifically leads to damage to the glomerular endothelium. To further understand aHUS pathophysiology, we validated an ex vivo model for measuring complement deposition on both control and patient human glomerular microvascular endothelial cells (GMVECs). Methods: Endothelial cells were incubated with human test sera and stained with an anti-C5b-9 antibody to visualize and quantify complement depositions on the cells with immunofluorescence microscopy. Results: First, we showed that zymosan-activated sera resulted in increased endothelial C5b-9 depositions compared to normal human serum (NHS). The levels of C5b-9 depositions were similar between conditionally immortalized (ci)GMVECs and primary control GMVECs. The protocol with ciGMVECs was further validated and we additionally generated ciGMVECs from an aHUS patient. The increased C5b-9 deposition on control ciGMVECs by zymosan-activated serum could be dose-dependently inhibited by adding the C5 inhibitor eculizumab. Next, sera from five aHUS patients were tested on control ciGMVECs. Sera from acute disease phases of all patients showed increased endothelial C5b-9 deposition levels compared to NHS. The remission samples showed normalized C5b-9 depositions, whether remission was reached with or without complement blockage by eculizumab. We also monitored the glomerular endothelial complement deposition of an aHUS patient with a hybrid complement factor H (CFH)/CFH-related 1 gene during follow-up. This patient had already chronic kidney failure and an ongoing deterioration of kidney function despite absence of markers indicating an aHUS flare. Increased C5b-9 depositions on ciGMVECs were observed in all samples obtained throughout different diseases phases, except for the samples with eculizumab levels above target. We then tested the samples on the patient's own ciGMVECs. The C5b-9 deposition pattern was comparable and these aHUS patient ciGMVECs also responded similar to NHS as control ciGMVECs. Discussion: In conclusion, we demonstrate a robust and reliable model to adequately measure C5b-9-based complement deposition on human control and patient ciGMVECs. This model can be used to study the pathophysiological mechanisms of aHUS or other diseases associated with endothelial complement activation ex vivo.


Atypical Hemolytic Uremic Syndrome , Complement Membrane Attack Complex , Humans , Complement Membrane Attack Complex/metabolism , Endothelial Cells/metabolism , Zymosan/metabolism , Complement Activation/genetics , Atypical Hemolytic Uremic Syndrome/genetics , Complement System Proteins/metabolism
4.
Front Immunol ; 14: 1254759, 2023.
Article En | MEDLINE | ID: mdl-37744338

Background: Complement activation in atypical hemolytic uremic syndrome (aHUS), C3 glomerulonephropathy (C3G) and immune complex-mediated membranoproliferative glomerulonephritis (IC-MPGN) may be associated with rare genetic variants. Here we describe gene variants in the Swedish and Norwegian populations. Methods: Patients with these diagnoses (N=141) were referred for genetic screening. Sanger or next-generation sequencing were performed to identify genetic variants in 16 genes associated with these conditions. Nonsynonymous genetic variants are described when they have a minor allele frequency of <1% or were previously reported as being disease-associated. Results: In patients with aHUS (n=94, one also had IC-MPGN) 68 different genetic variants or deletions were identified in 60 patients, of which 18 were novel. Thirty-two patients had more than one genetic variant. In patients with C3G (n=40) 29 genetic variants, deletions or duplications were identified in 15 patients, of which 9 were novel. Eight patients had more than one variant. In patients with IC-MPGN (n=7) five genetic variants were identified in five patients. Factor H variants were the most frequent in aHUS and C3 variants in C3G. Seventeen variants occurred in more than one condition. Conclusion: Genetic screening of patients with aHUS, C3G and IC-MPGN is of paramount importance for diagnostics and treatment. In this study, we describe genetic assessment of Nordic patients in which 26 novel variants were found.


Atypical Hemolytic Uremic Syndrome , Kidney Diseases , Humans , Complement System Proteins/genetics , Complement Activation/genetics , Atypical Hemolytic Uremic Syndrome/diagnosis , Atypical Hemolytic Uremic Syndrome/genetics , Gene Frequency
5.
Adv Exp Med Biol ; 1415: 9-13, 2023.
Article En | MEDLINE | ID: mdl-37440007

Age-related macular degeneration (AMD) is a complex degenerative disease of the retina. Dysfunction of the retinal pigment epithelium (RPE) occurs in early stages of AMD, and progressive RPE atrophy leads to photoreceptor death and visual impairments that ultimately manifest as geographic atrophy (GA), one of the late-stage forms of AMD. AMD is caused by a combination of risk factors including aging, lifestyle choices, and genetic predisposition. A gene variant in the complement factor H gene (CFH) that leads to the Y402H polymorphism in the factor H protein (FH) confers the second highest risk for the development and progression of AMD. FH is a major negative regulator of the alternative pathway of the complement system, and the FH Y402H variant leads to increased complement activation, which is detectable in AMD patients. For this reason, various therapeutic approaches targeting the complement system have been developed, however, so far with very limited or no efficacy. Interestingly, recent studies suggest roles for FH beyond complement regulation. Here, we will discuss the noncanonical functions of FH in RPE cells and highlight the potential implications of those functions for future therapeutic approaches.


Complement Factor H , Macular Degeneration , Humans , Complement Factor H/genetics , Complement Factor H/metabolism , Retinal Pigment Epithelium , Macular Degeneration/genetics , Macular Degeneration/metabolism , Complement Activation/genetics , Genetic Predisposition to Disease
6.
Kidney Int ; 104(2): 353-366, 2023 08.
Article En | MEDLINE | ID: mdl-37164260

The complement system plays a key role in the pathophysiology of kidney thrombotic microangiopathies (TMA), as illustrated by atypical hemolytic uremic syndrome. But complement abnormalities are not the only drivers of TMA lesions. Among other potential pathophysiological actors, we hypothesized that alteration of heparan sulfate (HS) in the endothelial glycocalyx could be important. To evaluate this, we analyzed clinical and histological features of kidney biopsies from a monocentric, retrospective cohort of 72 patients with TMA, particularly for HS integrity and markers of local complement activation. The role of heme (a major product of hemolysis) as an HS-degrading agent in vitro, and the impact of altering endothelial cell (ECs) HS on their ability to locally activate complement were studied. Compared with a positive control, glomerular HS staining was lower in 57 (79%) patients with TMA, moderately reduced in 20 (28%), and strongly reduced in 37 (51%) of these 57 cases. Strongly reduced HS density was significantly associated with both hemolysis at the time of biopsy and local complement activation (C3 and/or C5b-9 deposits). Using primary endothelial cells (HUVECs, Glomerular ECs), we observed decreased HS expression after short-term exposure to heme, and that artificial HS degradation by exposure to heparinase was associated with local complement activation. Further, prolonged exposure to heme modulated expression of several key genes of glycocalyx metabolism involved in coagulation regulation (C5-EPI, HS6ST1, HS3ST1). Thus, our study highlights the impact of hemolysis on the integrity of endothelial HS, both in patients and in endothelial cell models. Hence, acute alteration of HS may be a mechanism of heme-induced complement activation.


Atypical Hemolytic Uremic Syndrome , Kidney Diseases , Thrombotic Microangiopathies , Humans , Glycocalyx/metabolism , Hemolysis , Endothelial Cells/metabolism , Retrospective Studies , Complement Activation/genetics , Complement System Proteins/metabolism , Kidney Diseases/metabolism , Heparitin Sulfate/metabolism , Heme/metabolism
8.
J Innate Immun ; 15(1): 412-427, 2023.
Article En | MEDLINE | ID: mdl-36858027

The complement system plays a crucial role in host defense, homeostasis, and tissue regeneration and bridges the innate and the adaptive immune systems. Although the genetic variants in complement C2 (c.839_849+17del; p.(Met280Asnfs*5)) and C8B (c.1625C>T; p.(Thr542Ile)) are known individually, here, we report on a patient carrying their combination in a heterozygous form. The patient presented with a reduced general condition and suffers from a wide variety of autoimmune diseases. While no autoimmune disease-specific autoantibodies could be detected, genetic analysis revealed abnormalities in the two complement genes C2 and C8B. Therefore, we performed a comprehensive investigation of the innate immune system on a cellular and humoral level to define the functional consequences. We found slightly impaired functionality of neutrophils and monocytes regarding phagocytosis and reactive oxygen species generation and a diminished expression of the C5aR1. An extensive complement analysis revealed a declined activation potential for the alternative and classical pathway. Reconstitution with purified C2 and C8 into patient serum failed to normalize the dysfunction, whereas the addition of C3 improved the hemolytic activity. In clinical transfer, in vitro supplementation of the patient's plasma with FFP as a complement source could fully restore full complement functionality. This study describes for the first time a combined heterozygous genetic variation in complement C2 and C8B which, however, cannot fully explain the overall dysfunctions and calls for further complement deficiency research and corresponding therapies.


Autoimmune Diseases , Complement C2 , Humans , Complement Activation/genetics , Complement C2/genetics , Complement System Proteins/genetics , Genetic Variation/genetics
10.
Br J Cancer ; 128(1): 102-111, 2023 01.
Article En | MEDLINE | ID: mdl-36319846

BACKGROUND: Prognosis of metastatic BRAF V600E mutant colorectal cancer (CRC) is poor, and the prognostic implications of immune contextures in the tumour microenvironment (TME) for CRC remain elusive. METHODS: We collected the primary tumour specimens and clinicopathological characteristics of patients with de novo metastatic microsatellite-stable BRAF V600E mutant CRC from two medical centres. Gene expression analysis was performed using the nCounterⓇ PanCancer Immune Profiling Panel. The Cox proportional hazards regression model was used for analysing survival outcomes in association with immune gene expression and immune cells. Our complement score was defined on the basis of the average gene expression in the selected co-expression module. RESULTS: High expression of classical and regulatory complement genes was significantly associated with poor prognosis (N = 54). A high complement score (defined as a score above the median value) indicated significantly shorter survival. The overall survival (OS) impact of the high score remained significant in multivariate analyses. Additionally, our complement score was strongly correlated with C4d expression in immunohistochemical staining and tumour-associated macrophage (TAM) M2 signatures. CONCLUSIONS: Complement activation in the TME was significantly associated with poor OS and was correlated with TAM M2 in patients with de novo metastatic BRAF V600E mutant CRC.


Colonic Neoplasms , Colorectal Neoplasms , Rectal Neoplasms , Humans , Prognosis , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Tumor Microenvironment/genetics , Colorectal Neoplasms/pathology , Complement Activation/genetics , Mutation
11.
J Immunol ; 209(6): 1128-1137, 2022 09 15.
Article En | MEDLINE | ID: mdl-35977798

The tightly linked A and E blood alloantigen systems are 2 of 13 blood systems identified in chickens. Reported herein are studies showing that the genes encoding A and E alloantigens map within or near to the chicken regulator of complement activation (RCA) gene cluster, a region syntenic with the human RCA. Genome-wide association studies, sequence analysis, and sequence-derived single-nucleotide polymorphism information for known A and/or E system alleles show that the most likely candidate gene for the A blood system is C4BPM gene (complement component 4 binding protein, membrane). Cosegregation of single-nucleotide polymorphism-defined C4BPM haplotypes and blood system A alleles defined by alloantisera provide a link between chicken blood system A and C4BPM. The best match for the E blood system is the avian equivalent of FCAMR (Fc fragment of IgA and IgM receptor). C4BPM is located within the chicken RCA on chicken microchromosome 26 and is separated from FCAMR by 89 kbp. The genetic variation observed at C4BPM and FCAMR could affect the chicken complement system and differentially guide immune responses to infectious diseases.


Chickens , Genome-Wide Association Study , Animals , Chickens/genetics , Complement Activation/genetics , Complement C4 , Genetic Variation , Immunoglobulin A/genetics , Immunoglobulin Fc Fragments/genetics , Isoantigens , Membrane Proteins/genetics , Polymorphism, Single Nucleotide
12.
J Cell Mol Med ; 26(5): 1445-1455, 2022 03.
Article En | MEDLINE | ID: mdl-35064759

There is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease-19 (COVID-19). We aimed to a) identify complement-related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) predicting these outcomes and c) validate whether complement-related variants are associated with an impaired complement phenotype. We prospectively recruited consecutive adult patients of Caucasian origin, hospitalized due to COVID-19. Through targeted next-generation sequencing, we identified variants in complement factor H/CFH, CFB, CFH-related, CFD, CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, and A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS13). Among 381 variants in 133 patients, we identified 5 critical variants associated with severe COVID-19: rs2547438 (C3), rs2250656 (C3), rs1042580 (THBD), rs800292 (CFH) and rs414628 (CFHR1). Using age, gender and presence or absence of each variant, we developed an ANN predicting morbidity and mortality in 89.47% of the examined population. Furthermore, THBD and C3a levels were significantly increased in severe COVID-19 patients and those harbouring relevant variants. Thus, we reveal for the first time an ANN accurately predicting ICU hospitalization and death in COVID-19 patients, based on genetic variants in complement genes, age and gender. Importantly, we confirm that genetic dysregulation is associated with impaired complement phenotype.


COVID-19/genetics , COVID-19/mortality , Neural Networks, Computer , COVID-19/epidemiology , Complement Activation/genetics , Complement Factor H/genetics , Complement System Proteins/genetics , Female , Greece/epidemiology , Hospitalization/statistics & numerical data , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Models, Genetic , Morbidity , Polymorphism, Single Nucleotide , Thrombomodulin/genetics
13.
J Allergy Clin Immunol ; 149(2): 550-556.e2, 2022 02.
Article En | MEDLINE | ID: mdl-34800432

BACKGROUND: Severe coronavirus disease 2019 (COVID-19) is characterized by impaired type I interferon activity and a state of hyperinflammation leading to acute respiratory distress syndrome. The complement system has recently emerged as a key player in triggering and maintaining the inflammatory state, but the role of this molecular cascade in severe COVID-19 is still poorly characterized. OBJECTIVE: We aimed at assessing the contribution of complement pathways at both the protein and transcriptomic levels. METHODS: To this end, we systematically assessed the RNA levels of 28 complement genes in the circulating whole blood of patients with COVID-19 and healthy controls, including genes of the alternative pathway, for which data remain scarce. RESULTS: We found differential expression of genes involved in the complement system, yet with various expression patterns: whereas patients displaying moderate disease had elevated expression of classical pathway genes, severe disease was associated with increased lectin and alternative pathway activation, which correlated with inflammation and coagulopathy markers. Additionally, properdin, a pivotal positive regulator of the alternative pathway, showed high RNA expression but was found at low protein concentrations in patients with a severe and critical disease, suggesting its deposition at the sites of complement activation. Notably, low properdin levels were significantly associated with the use of mechanical ventilation (area under the curve = 0.82; P = .002). CONCLUSION: This study sheds light on the role of the alternative pathway in severe COVID-19 and provides additional rationale for the testing of drugs inhibiting the alternative pathway of the complement system.


COVID-19/immunology , Complement Activation/genetics , Complement Pathway, Alternative/genetics , Complement System Proteins/genetics , Disseminated Intravascular Coagulation/immunology , SARS-CoV-2/pathogenicity , COVID-19/genetics , COVID-19/therapy , COVID-19/virology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/immunology , Cardiovascular Diseases/therapy , Cardiovascular Diseases/virology , Case-Control Studies , Comorbidity , Complement System Proteins/immunology , Diabetes Mellitus/genetics , Diabetes Mellitus/immunology , Diabetes Mellitus/therapy , Diabetes Mellitus/virology , Disseminated Intravascular Coagulation/genetics , Disseminated Intravascular Coagulation/therapy , Disseminated Intravascular Coagulation/virology , Female , Gene Expression Regulation , Humans , Hypertension/genetics , Hypertension/immunology , Hypertension/therapy , Hypertension/virology , Lectins/genetics , Lectins/immunology , Male , Middle Aged , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/virology , Properdin/genetics , Properdin/immunology , Respiration, Artificial , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Severity of Illness Index
14.
Front Immunol ; 12: 700705, 2021.
Article En | MEDLINE | ID: mdl-34899680

A novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), arose late in 2019, with disease pathology ranging from asymptomatic to severe respiratory distress with multi-organ failure requiring mechanical ventilator support. It has been found that SARS-CoV-2 infection drives intracellular complement activation in lung cells that tracks with disease severity. However, the cellular and molecular mechanisms responsible remain unclear. To shed light on the potential mechanisms, we examined publicly available RNA-Sequencing data using CIBERSORTx and conducted a Ingenuity Pathway Analysis to address this knowledge gap. In complement to these findings, we used bioinformatics tools to analyze publicly available RNA sequencing data and found that upregulation of complement may be leading to a downregulation of T-cell activity in lungs of severe COVID-19 patients. Thus, targeting treatments aimed at the modulation of classical complement and T-cell activity may help alleviate the proinflammatory effects of COVID-19, reduce lung pathology, and increase the survival of COVID-19 patients.


COVID-19/genetics , Complement Activation/genetics , Complement System Proteins/genetics , Gene Expression Profiling/methods , Lung/metabolism , T-Lymphocytes/metabolism , COVID-19/immunology , COVID-19/virology , Gene Regulatory Networks/genetics , Humans , Intracellular Space/genetics , Lung/immunology , Lung/microbiology , Lymphocyte Count , SARS-CoV-2/physiology , T-Lymphocyte Subsets/metabolism
15.
Front Immunol ; 12: 780810, 2021.
Article En | MEDLINE | ID: mdl-34899745

Background: Trypanosomatids are protozoa responsible for a wide range of diseases, with emphasis on Chagas Disease (CD) and Leishmaniasis, which are in the list of most relevant Neglected Tropical Diseases (NTD) according to World Health Organization (WHO). During the infectious process, immune system is immediately activated, and parasites can invade nucleated cells through a broad diversity of receptors. The complement system - through classical, alternative and lectin pathways - plays a role in the first line of defense against these pathogens, acting in opsonization, phagocytosis and lysis of parasites. Genetic modifications in complement genes, such as Single Nucleotide Polymorphisms (SNPs), can influence host susceptibility to these parasites and modulate protein expression. Methods: In March and April 2021, a literature search was conducted at the PubMed and Google Scholar databases and the reference lists obtained were verified. After applying the inclusion and exclusion criteria, the selected studies were evaluated and scored according to eleven established criteria regarding their thematic approach and design, aiming at the good quality of publications. Results: Twelve papers were included in this systematic review: seven investigating CD and five focusing on Leishmaniasis. Most articles presented gene and protein approaches, careful determination of experimental groups, and adequate choice of experimental techniques, although several of them were not up-to-date. Ten studies explored the association of polymorphisms and haplotypes with disease progression, with emphasis on lectin complement pathway genes. Decreased and increased patient serum protein levels were associated with susceptibility to CD and Visceral Leishmaniasis, respectively. Conclusion: This systematic review shows the influence of genetic alterations in complement genes on the progression of several infectious diseases, with a focus on conditions caused by trypanosomatids, and contributes suggestions and evidence to improve experimental design in future research proposals.


Chagas Disease/parasitology , Complement Activation/genetics , Complement System Proteins/genetics , Genetic Variation , Leishmania/pathogenicity , Leishmaniasis/parasitology , Trypanosoma cruzi/pathogenicity , Chagas Disease/genetics , Chagas Disease/immunology , Chagas Disease/metabolism , Complement System Proteins/immunology , Complement System Proteins/metabolism , Disease Progression , Genetic Predisposition to Disease , Host-Parasite Interactions , Humans , Leishmania/immunology , Leishmaniasis/genetics , Leishmaniasis/immunology , Leishmaniasis/metabolism , Phenotype , Risk Assessment , Risk Factors , Trypanosoma cruzi/immunology
16.
Genes (Basel) ; 12(12)2021 12 15.
Article En | MEDLINE | ID: mdl-34946939

The presence of complement activation products at sites of pathology in post-mortem Alzheimer's disease (AD) brains is well known. Recent evidence from genome-wide association studies (GWAS), combined with the demonstration that complement activation is pivotal in synapse loss in AD, strongly implicates complement in disease aetiology. Genetic variations in complement genes are widespread. While most variants individually have only minor effects on complement homeostasis, the combined effects of variants in multiple complement genes, referred to as the "complotype", can have major effects. In some diseases, the complotype highlights specific parts of the complement pathway involved in disease, thereby pointing towards a mechanism; however, this is not the case with AD. Here we review the complement GWAS hits; CR1 encoding complement receptor 1 (CR1), CLU encoding clusterin, and a suggestive association of C1S encoding the enzyme C1s, and discuss difficulties in attributing the AD association in these genes to complement function. A better understanding of complement genetics in AD might facilitate predictive genetic screening tests and enable the development of simple diagnostic tools and guide the future use of anti-complement drugs, of which several are currently in development for central nervous system disorders.


Alzheimer Disease/genetics , Alzheimer Disease/immunology , Complement Activation/genetics , Brain/pathology , Clusterin/genetics , Complement Activation/immunology , Complement C1s/genetics , Complement System Proteins/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Humans , Polymorphism, Single Nucleotide/genetics , Receptors, Complement 3b/genetics
17.
Front Immunol ; 12: 803244, 2021.
Article En | MEDLINE | ID: mdl-34970276

Alpha-2-macroglobulin is an extracellular macromolecule mainly known for its role as a broad-spectrum protease inhibitor. By presenting itself as an optimal substrate for endopeptidases of all catalytic types, alpha-2-macroglobulin lures active proteases into its molecular cage and subsequently 'flags' their complex for elimination. In addition to its role as a regulator of extracellular proteolysis, alpha-2-macroglobulin also has other functions such as switching proteolysis towards small substrates, facilitating cell migration and the binding of cytokines, growth factors and damaged extracellular proteins. These functions appear particularly important in the context of immune-cell function. In this review manuscript, we provide an overview of all functions of alpha-2-macroglobulin and place these in the context of inflammation, immunity and infections.


Communicable Diseases/etiology , Communicable Diseases/metabolism , Disease Susceptibility , Immunity , Inflammation/etiology , Inflammation/metabolism , Pregnancy-Associated alpha 2-Macroglobulins/genetics , Pregnancy-Associated alpha 2-Macroglobulins/metabolism , Animals , Biomarkers , Communicable Diseases/diagnosis , Complement Activation/genetics , Complement Activation/immunology , Complement System Proteins/immunology , Cytokines/metabolism , Diagnosis, Differential , Endopeptidases , Humans , Inflammation/diagnosis , Intercellular Signaling Peptides and Proteins/metabolism , Leukocytes/immunology , Leukocytes/metabolism , Leukocytes/pathology , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/pathology , Protein Binding , Proteolysis , Signal Transduction
18.
Front Immunol ; 12: 769242, 2021.
Article En | MEDLINE | ID: mdl-34819935

Complement Factor H-Related 3 (FHR-3) is a major regulator of the complement system, which is associated with different diseases, such as age-related macular degeneration (AMD). However, the non-canonical local, cellular functions of FHR-3 remained poorly understood. Here, we report that FHR-3 bound to oxidative stress epitopes and competed with FH for interaction. Furthermore, FHR-3 was internalized by viable RPE cells and modulated time-dependently complement component (C3, FB) and receptor (C3aR, CR3) expression of human RPE cells. Independently of any external blood-derived proteins, complement activation products were detected. Anaphylatoxin C3a was visualized in treated cells and showed a translocation from the cytoplasm to the cell membrane after FHR-3 exposure. Subsequently, FHR-3 induced a RPE cell dependent pro-inflammatory microenvironment. Inflammasome NLRP3 activation and pro-inflammatory cytokine secretion of IL-1ß, IL-18, IL-6 and TNF-α were induced after FHR-3-RPE interaction. Our previously published monoclonal anti-FHR-3 antibody, which was chimerized to reduce immunogenicity, RETC-2-ximab, ameliorated the effect of FHR-3 on ARPE-19 cells. Our studies suggest FHR-3 as an exogenous trigger molecule for the RPE cell "complosome" and as a putative target for a therapeutic approach for associated degenerative diseases.


Blood Proteins/immunology , Complement Activation/immunology , Complement Factor H/immunology , Epithelial Cells/immunology , Retinal Pigment Epithelium/cytology , Blood Proteins/genetics , Blood Proteins/metabolism , Cell Line , Complement Activation/genetics , Complement C3/genetics , Complement C3/immunology , Complement C3/metabolism , Complement Factor H/genetics , Complement Factor H/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Epithelial-Mesenchymal Transition/immunology , Gene Expression/genetics , Gene Expression/immunology , HEK293 Cells , Humans , Inflammasomes/genetics , Inflammasomes/immunology , Inflammasomes/metabolism , Macrophage-1 Antigen/genetics , Macrophage-1 Antigen/immunology , Macrophage-1 Antigen/metabolism , Macular Degeneration/genetics , Macular Degeneration/immunology , Macular Degeneration/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Polymorphism, Single Nucleotide/genetics , Polymorphism, Single Nucleotide/immunology
19.
Sci Rep ; 11(1): 15924, 2021 08 05.
Article En | MEDLINE | ID: mdl-34354123

Hereditary Angioedema (HAE) is a rare genetic disease generally caused by deficiency or mutations in the C1-inhibitor gene, SERPING1, a member of the Serpin family. HAE results in acute attacks of edema, vasodilation, GI pain and hypotension. C1INH is a key inhibitor of enzymes controlling complement activation, fibrinolysis and the contact system. In HAE patients, contact system activation leads to uncontrolled production of bradykinin, the vasodilator responsible for the characteristic symptoms of HAE. In this study, we present the first physiological in vivo model to mimic acute HAE attacks. We evaluate hypotension, one of the many hallmark symptoms of acute HAE attacks using Serping1 deficient mice (serping1-/-) and implanted telemetry. Attacks were induced by IV injection of a silica nanoparticle (SiNP) suspension. Blood pressure was measured in real time, in conscious and untethered mice using implanted telemetry. SiNP injection induced a rapid, reversible decrease in blood pressure, in the presence of angiotensin converting enzyme (ACE) inhibition. We also demonstrate that an HAE therapeutic, ecallantide, can prevent HAE attacks in this model. The in vivo murine model described here can facilitate the understanding of acute HAE attacks, support drug development and ultimately contribute to improved patient care.


Angioedemas, Hereditary/physiopathology , Complement C1 Inhibitor Protein/genetics , Disease Models, Animal , Animals , Bradykinin/genetics , Complement Activation/genetics , Complement Activation/immunology , Complement C1 Inhibitor Protein/metabolism , Edema/drug therapy , Female , Fibrinolysis/genetics , Hypotension/physiopathology , Male , Mice , Mice, Inbred C57BL , Peptides , Serpins/genetics
20.
Hum Gene Ther ; 32(21-22): 1370-1381, 2021 11.
Article En | MEDLINE | ID: mdl-34238030

The complement system is a key component of innate immunity, but impaired regulation influences disease susceptibility, including age-related macular degeneration and some kidney diseases. While complete complement inhibition has been used successfully to treat acute kidney disease, key unresolved challenges include strategies to modulate rather than completely inhibit the system and to deliver therapy potentially over decades. Elevating concentrations of complement factor I (CFI) restricts complement activation in vitro and this approach was extended in the current study to modulate complement activation in vivo. Sustained increases in CFI levels were achieved using an adeno-associated virus (AAV) vector to target the liver, inducing a 4- to 5-fold increase in circulating CFI levels. This led to decreased activity of the alternative pathway as demonstrated by a reduction in the rate of inactive C3b (iC3b) deposition and more rapid formation of C3 degradation products. In addition, vector application in a mouse model of systemic lupus erythematosus (NZBWF1), where tissue injury is, in part, complement dependent, resulted in reduced complement C3 and IgG renal deposition. Collectively, these data demonstrate that sustained elevation of CFI reduces complement activation in vivo providing proof-of-principle support for the therapeutic application of AAV gene delivery to modulate complement activation.


Dependovirus , Fibrinogen , Animals , Complement Activation/genetics , Complement System Proteins/genetics , Dependovirus/genetics , Mice
...